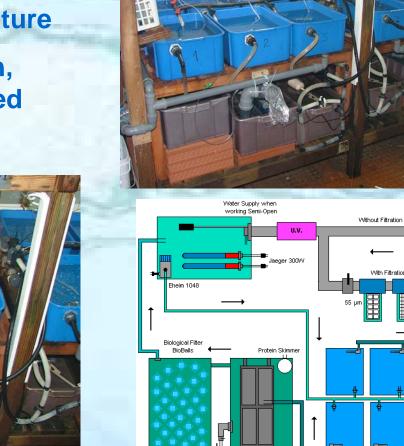


Universidade do Algarve Centro de Ciências do Mar

The Experimental Culture of the Cuttlefish, Sepia officinalis, in the Algarve, South Portugal

José P. Andrade, António V. Sykes e Pedro M. Domingues

Objectives


 Study and gather a profound knowledge of ecology and biology aspects of the species:
first phase – maintenance
second phase – culture
third phase – production and mass production

Development of intensive aquaculture techniques and seawater systems in order to start cuttlefish culture commercially

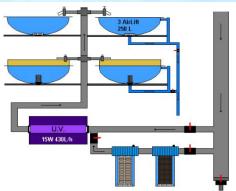
Culture Systems

12x 10 L tanks for Cuttlefish and Grass Shrimp Culture Can fully work in open,

closed and semi-closed

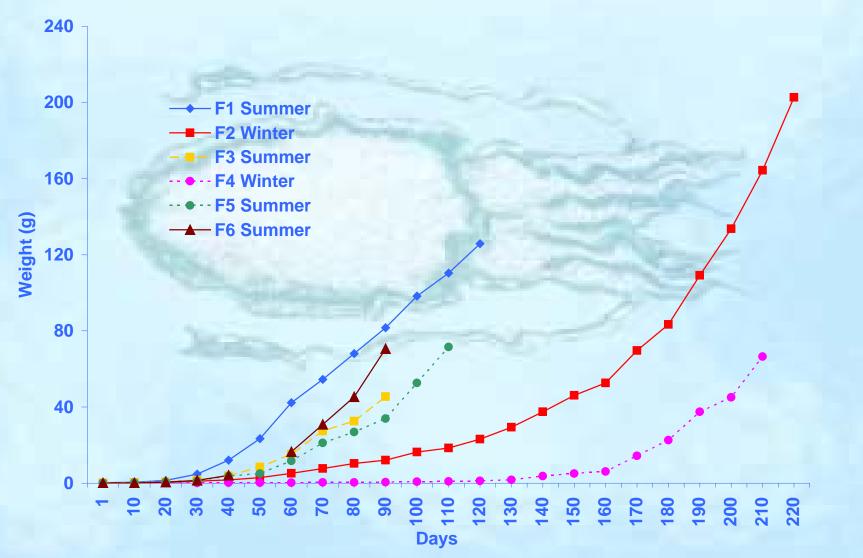
Water out in Semi-oper

500 um



Culture Systems

10x 250 L tanks for Cuttlefish Culture, from egg to adult Can only work in open system



Culture Technology - Cuttlefish Life Cycle

Culture Technology - Cuttlefish Life Cycle

Culture Technology - Cuttlefish Life Cycle

Growth always exponential

Summer Generation \Rightarrow 3-4 months Winter Generation \Rightarrow 7-9 months

Prey

live mysids – Paramysis nouvelli - first 15 DAH

live or frozen grass shrimp – Palaemonetes varians - onwards

Ecology and Biology Research

First and second phases completed with success. Main achievements are:

- two or more generations each year;
- high values of survival;
- only one species used as prey (Palaemonetes varians)

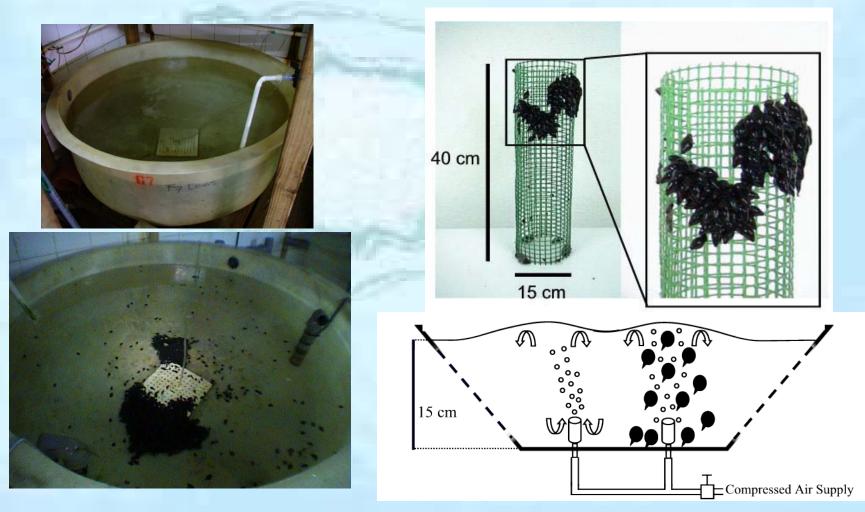
Main problems are:

- low fecundity and fertility;
- broodstocks and techniques (inbreeding after 6 generations)

 need a live prey (grass shrimp) at least until 15 DAH and onwards, which production techniques are not fully developed yet

Production and Mass Production

Current Objectives:


Optimization of culture techiques: hatchery densities prey

First Semi-Intensive production in salt ponds

Production and Mass Production

Hatchery

Optimization of egg collection and incubation

Hatchery / Density → Optimization of culture densities → hatchling → juveniles 500 hatchlings/m² 120 juveniles/m² Min. Area – 600 cm² Min. Area – 1100 cm²

Hatchery / Prey

Development of grass shrimp production

- development of feeds
- development of reproduction technology

Production and Mass Production

Future Objectives:

Broodstock Management Strategies

Density
Enhancement of fecundity and fertility
General Methodologies

Nutritional study of embrionary development
→ Optimization of live diets and Artemia sp.
→ Reformulation of manufactured feeds

Fundings

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA E DO ENSINO SUPERIOR

Portugal

