

# University of the Algarve Center of Marine Sciences





# THE USE OF LIVE GRASS SHRIMP (Palaemonetes varians) AS THE ONLY SOURCE OF FOOD FOR THE CULTURE OF CUTTLEFISH, Sepia officinalis (Linnaeus, 1758).

António V. Sykes, Pedro M. Domingues & José P. Andrade



# **Culture Technology - Reproduction**



# Culture Technology – Hatchery

# Optimization of egg collection and incubation













Culture Technology - Hatchery Rearing and Density → Different phase culture densities → hatchlings → juveniles 500 hatchlings/m<sup>2</sup> 120 juveniles/m<sup>2</sup> Min. Area – 600 cm<sup>2</sup> Min. Area – 1100 cm<sup>2</sup>







## **Problems:**

Limited dietary alternatives for mass culture
 live mysids – Paramysis nouvelli - first 15 DAH
 live or frozen grass shrimp – Palaemonetes varians – onwards

Inexistent overall nutrition knowledge about both predator and prey

Labor and costs associated with live feeds, increased by the use of 2 prey species



# **Objectives:**

Culture cuttlefish through the life cycle exclusively on a diet of live grass shrimp and its consequences on:

growth
 age at time of spawning
 fertility

Determine grass shrimp nutritional profile:

total proteinamino acids

total lipids

► fatty acids



## **Growth Experiments:**

- Culture methodologies described earlier in State of the Art
- Food Live Grass Shrimp Palaemonetes varians of increasing sizes captured from nature and supplied ad libitum
- Determination of:
  - Mean Weight
    Mean IGR
    Total Mortality
  - Cumulative Mortality
    Total Egg Number and Weight
  - **Egg laying period Fertility**
  - Breeders Weight and Sex

Fecundity

#### **Results and Discussion**



#### **Cuttlefish Life Cycles:**



### **Results and Discussion**



## **Cuttlefish Life Cycles:**

Table I - Weight, Growth Models, Mean Cumulative Mortality and Total Biomass of the life cycles for S. officinalis cultured in the

laboratory exclusively fed on live grass shrimp (P. varians).

| Generation                          | F2                                   | F3                                   | F4                                   | F5                                 | F6                                  |
|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|
| Season                              | Winter                               | Summer                               | Winter                               | Winter/Summer                      | Summer                              |
| Growth Model                        | Y=-4.8836+2.1145*e <sup>0.021x</sup> | Y=-5.1797+3.3155*e <sup>0.031x</sup> | Y=-0.2662+0.0263*e <sup>0.037x</sup> | Y=-6.811+4.462*e <sup>0.025x</sup> | Y=-3.019+1.592*e <sup>0.043</sup> ⊭ |
| Statistical R <sup>2</sup> of model | 0.996                                | 0.985                                | 0.994                                | 0.995                              | 0,997                               |
| Mean IGR (%BW/day)                  | 3.56±1.655                           | 13.79±5.954                          | 3.10±1.377                           | 6.05±3.277                         | 8.20±3.545                          |
| Mean Cumulative Mortality (%)       | 18.52                                | 50.00                                | 0.00                                 | 8.00                               | 80.00                               |
| Mean Temperature (°C)               | 17.11±1.69                           | 23.43±1.35                           | 15.17±2.95                           | 21.06±2.58                         | 23.63±1.84                          |
| Maximum Weight at birth (g)         | 0.113                                | 0.124                                | 0.106                                | 0.145                              | 0.142                               |
| Minimum Weight at birth (g)         | 0.060                                | 0.067                                | 0.054                                | 0.024                              | 0.078                               |
| Maximum Weight at spawning (g)      | 263.30                               | 56.28                                | 89.14                                | 97.64                              | 91.60                               |
| Minimum Weight at spawning (g)      | 140.10                               | 25.07                                | 46.10                                | 40.59                              | 39.90                               |
| Hatchlings used                     | 27                                   | 30                                   | 35                                   | 50                                 | 60                                  |
| Total Biomass Produced (g)          | 4438.80                              | 637.15                               | 2329.17                              | 3288.09                            | 937.00                              |

### **Results and Discussion**



## **Cuttlefish Life Cycles:**

Table II – Biological parameters of the life cycles for S. officinalis cultured in the laboratory exclusively fed on live grass shrimp (P. varians).

| Generation                         | F2                | F3               | F4                | F5                | F6               |
|------------------------------------|-------------------|------------------|-------------------|-------------------|------------------|
| Duration of life cycle (days)      | 262               | 126              | 274               | 254               | 104              |
| Duration of spawning period (days) | 42                | 36               | 62                | 138               | 14               |
| Eggs laid (n)                      | 5916              | 1808             | 3952              | 4780              | 586              |
| Total egg biomass (g)              | 3448.5            | 236.8            | 1261              | 2103              | 150.6            |
| Eggs (n) / Female                  | 370               | 301              | 247               | 478               | 293              |
| Eggs sampled (n)                   | 2939              | 848              | 1100              | 1613              | 270              |
| Mean egg weight (g)                | 0.56 ± 0.17       | $0.25 \pm 0.08$  | 0.32 ± 0.10       | 0.44 ± 0.13       | 0.26 ± 0.09      |
| Largest egg weighed (g)            | 2.464             | 0.622            | 0.834             | 1.004             | 0.519            |
| Smallest egg weighed (g)           | 0.114             | 0.142            | 0.113             | 0.148             | 0.098            |
| Hatchlings sampled (n)             | 255               | 204              | 400               | 217               | No hatchlings    |
| Mean hatchling weight (g)          | 0.076 ± 0.013     | 0.081 ± 0.016    | 0.055 ± 0.019     | 0.100 ± 0.012     | -                |
| Mean female weight (g); (n)        | 193.3 ± 30.8 (16) | 64.7 ± 12.7 (6)  | 101.7 ± 25.9 (21) | 104.9 ± 21.8 (10) | 101.8 ± 15.9 (2) |
| Mean male weight (g); (n)          | 310.0 ± 89.6 (7)  | 77.6 ± 22.3 (18) | 200.6 ± 37.9 (11) | 110.8 ± 13.3 (9)  | 125.7 ± 19.4 (5) |
| Mean temperature; Time to hatch    | 25°C ; 25 days    | 20ºC ; 28days    | 22.6 °C ; 26 days | 15°C ; 60 days    |                  |
| Hatching percentage (%)            | -                 | 16.0             | 47.7              | 67.5              | 0.0              |



- ➡ It is possible to culture S. officinalis exclusively on a live grass shrimp diet supplied ad libitum
- Temperature is still the most important factor explaining differences between generations
- Winter generations have always at least 50% longer cycles and consequently grow larger
- Shorter life cycles than those reported by NRCC and Caen Researcher are probably due to smaller culture bottom areas



Short life cycles, high temperatures and increased growth and generations seems to promote overall mortality, fecundity and fertility

 $\Rightarrow$  Temperature seems to affect sex ratio (2/3)

▶ Winter – 2.3 and 1.9

Hybrid – 0.9

Summer – 0.3 and 0.4



Fertility did not displayed a clear pattern, increasing or decreasing. However, like in Forsythe *et al.* (1994), it dropped completely after 6 generations

- Faster embryonic development of eggs, induced by higher temperatures, seems to promoted higher mortality
- Total protein, lipid and water content of grass shrimp seems to be similar to those reported for cuttlefish



Fatty acid of both cuttlefish and grass shrimp are similar, being 16:0, 20:5n-3 and 22:6n-3 the most important and abundant

Results show that lipid metabolism has been neglected

PUFA rich food is needed for hatchling and juvenile phase



# Grass shrimp is good enough for replacing mysids and culture cuttlefish throughout the life cycle





Cuttlefish growth during Summer

- Amount of food supply per day based on culture temperature
- Nutritional content of both cuttlefish and grass shrimp
- ➡ Production of grass shrimp

**Development of artificial diets and intensive culture** 

#### **Fundings**

# FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA E DO ENSINO SUPERIOR

Portugal

